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SUMMARY. We consider the problem of estimating a smooth common trans-
fer function shared by a panel of short time series that are contemporaneously
correlated. We propose an estimation scheme using a likelihood approach
that penalizes the roughness of the common transfer function. For a known
smoothness parameter, the estimation can be done via an iterative procedure.
The method of cross-validation can be used to determine the smoothness pa-
rameter. We illustrate the proposed method with a biological example of
indirectly estimating the spawning date distribution of North Sea cod. Some
simulation results are reported on the empirical performance of the proposed
method.

Key words: cod-spawning-date distribution, (generalized) cross-validation,

seemingly unrelated regression, multimodality

*email: kung-sik-chan@uiowa.edu



1. Introduction

Consider the following stochastic regression model describing how the re-

sponse depends on the aggregate effects of a covariate:

m2
Y, = aTWt+Zq/;jxt,j+et,t:1,2,...,T, (1)

Jj=m1

where Y} are the responses, W; and X, ; are vector-valued and scaler-valued
covariates, a and s are parameters and {e;} is a sequence of independent
and identically distributed random variables of zero mean and finite variance;
the superscript 7" denotes the transpose. The sampling scheme is as follows.
Both Y and W are measured over regular, basic sampling intervals. Each
basic sampling interval is further sub-divided into, say M, equal intervals over
each of which X is measured. In the biological application to be discussed in
section 4, Y and W were measured annually whereas X was measured daily.
The measurement of X in the jth sub-interval of the tth basic sampling
interval is denoted by X, ;. The summation limits m; and msy are assumed
to be known integers. The model defined by (1) is also known as a transfer-
function model (Box et al., 1994) or distributed-lag model (Almon, 1965).

The main interest is to estimate 1); as a function of j. Often, the func-
tional form of ¢ is unknown. Empirical parametric models such as the ratio-
nal transfer function model and the Almon polynomial lag model are popular
methods for estimating v, but they are less useful with complex functional
forms. For example, in our biological application, 1y may be a multimodal
function, in which case both the rational transfer function model and the
Almon polynomial lag model require many parameters for providing an ade-

quate description of ¢. Shiller (1973) introduces a nonparametric approach



for estimating a smooth v function by postulating a smoothness prior on
the second difference of ¢, but otherwise putting no constraints on . See,
also, Kitagawa and Gersch (1996). (Shiller also discussed briefly the use of
higher differences, but we shall not pursue this point here.) Specifically, it is
assumed that

(1 - B)*y; =, (2)
where B is the backshift operator defined by Bw; = v, 1, and n; are iid
normal with zero mean and variance 0,2) > (0. That is, a hierarchical model
is employed. Shiller discussed both the use of a fully Bayesian analysis with
non-informative priors as well as a sort of empirical Bayes approach where
072] is specified by some rule of thumb. Note that the approach introduced by
Shiller is similar to spline smoothing; see Wahba (1990), Wood (2000) and
Gu (2002). The nonparametric approach of Shiller can cope with complex
functional form of .

However, even the nonparametric approach fails if the number of data
cases is small compared to ms — m; + 1, the number of lags of X appearing
in the model. This problem may be circumvented if there exist a panel of
time series that share the same transfer function so that information can be
pooled across series for estimating 1. Here, we consider this situation so that

the sth series is generated by the model:

m2
Y:‘,,s = Q’TWt,s + Z ijt,j + et,87t = 17 27 e aTa (3)

Jj=mi
where we note that the same X’s enter into the equation for each compo-
nent series, but W and e may vary across series. For the panel data, the
errors are often contemporaneously correlated although they may be seri-

ally independent. Here, we “extend” Shiller’s approach to a multivariate



stochastic regression model with contemporaneously correlated errors that
subsumes the common transfer function model defined by (3). However, our
approach differ from Shiller’s approach in that we use a penalized likelihood
approach (Green and Silverman, 1994).

We now outline the organization of the rest of the paper. In section 2, we
elaborate on the framework of a multivariate stochastic regression model that
subsumes the common transfer function model. A cross-validation approach
is outlined for estimating the smoothness parameter. Some large-sample
properties of the estimator are derived. In section 3, a simulation study is
reported where the simulation model is motivated by the real application. In
the simulation study we investigate the empirical power of our approach for
detecting multimodality in the ¢ function. In section 4 we apply the proposed
method to a biological data set motivating the study. In particular, we
estimate the probability density function of the egg spawning date of North
Sea cod indirectly based on data on sea current, spawning biomass and counts
of half-year old cod in eight fjords in Southern Norway. We briefly conclude

in section 5.

2. A multivariate stochastic regression model
Consider the following general regression model with multivariate response

and covariate.

Yt:Xt,B—i-et;t:l,...,T (4)

where the dimension of Y; is n x 1, X; is n X k, and the coefficient vector
B is k x 1. The e;’s are independent and identically distributed as normal
with mean zero and variance-covariance matrix {2, and e; is independent of
X;. (Here, we restrict the errors to be normally distributed for convenience;

extension to non-normality is straight-forward but it will complicate the iter-
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ative estimation procedure below.) This model is rather general and includes
the common transfer-function model discussed at the end of the preceding
section. Consider the case that the dimension of 3 is high compared to the
sample size resulting in multicollinearity. The multicollinearity problem can
be mitigated by exploiting some known “smoothness” property of 5. Sup-
pose that the roughness of 5 can be quantified by the Euclidean norm of
n = AB where A is a known m x k matrix. (In the case of the common
transfer function model defined by (3), Af is the vector of second differences
of 1.) We can now construct a penalized log-likelihood where a quadratic

penalty for Af is used:

T

TATA
{p) = —g log || — %Z(Yt - X,8)TQ (Y — X,8) — % ﬁTﬁa (5)
t=1 n

where the coefficient 0,2’ > 0 quantifies the trade-off between badness of fit and
roughness of the parameter; 0727 will be determined by the method of cross-
validation. Here, the penalized log-likelihood has the Bayesian interpretation
that the components of 1 have joint prior independent and identical normal
distribution of zero mean and variance 7.

2

Notice that if = [Q;;] and the smoothness parameter 72 = i

(772] are

known, [ can be estimated by minimizing the following expression.

T T AT
Quy {Z(Yt — XiB)TQ7H(Y, — Xi8) + w}

t=1 n

+728T AT AB.
The introduction of €4, in the definition of 72 is to make the latter in-

terpretable as the signal-to-noise ratio; alternatively, we could use tr(2)/n,
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i.e. the average variance, instead of {2;;, where for any square matrix A,
tr(A) is the sum of diagonal elements of A. Assume for the moment that
the smoothness parameter 7 is known. Define L = (€2/Q;;)"2. Then the
preceding penalized sum of least squares can be minimized by an itera-
tive process. The iterative procedure bears resemblance to the method of
seemingly unrelated regression technique, see Zellner (1962) and Hamilton
(1994). We first find 3© by regressing Y; on X,. For i = 0,1,2,..., com-
pute Q0 = LS (Y, — X7 8D) (Y, — X[ BO)" and LY obtained via the

Cholesky decomposition of Q). Define

LY, LWX,

LOY, LOX,

LY, L0 X,
0 TA

Next, we update 8@ by regressing Y® on X@. The iterative procedure
can be stopped by using some stopping criteria, e.g., when the relative change
in the L'-norm of the 3@ or the objective function defined in (5) is smaller
than some prespecified tolerance level. At the end of the iteration and letting
Q) be the estimator of €, it can be readily checked that

B o= (ATA/e+ ) X[OT'X)T Y X[OTY, (7)
t

t

2
n

proximately given by (ATA/62+ 3", XTQ71X,)~1 (>, XTQ~1X,)(ATA/62 +
> XTQTX)

where 62 = 72/€;;. Hence, the asymptotic covariance matrix of 3 is ap-

The smoothness parameter 7 can be determined by minimizing the cross-
validation (CV) or the generalized cross-validation (GCV); see Wahba (1990)

and Green and Silverman (1994). In order to visualize the calculation of
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CV or GCV, let Y be the vector obtained by stacking up the Y;’s, X the

corresponding design matrix and Y the fitted values so that
Y =Xj3=HY, (8)

where the matrix H = [h;;] is the hat matrix equal to XWW where W is
implicitly defined by (7) in the vector form B =WY. The values of CV =
CV(r) and GCV = GCV (1) can be found as follows.
~ (¥ - V)’
cv = —_— 9
M = i )
QI O

GCV(T) - z_; (1 _ 1 Z?:l hjj)2-

In order to estimate 7 using this technique, we will start the optimization

(10)

at a value that “equate” the information from the data with that from the

smoothness “prior”, i.e. the initial value 7 is set to be

T
= —tr%%ﬁﬁt). (11)
In other words, the initial value corresponds to a probably over-smoothed
model with the amount of smoothing having as much weight as the data
information. Since the value of 7 is nonnegative, the optimization can be
more easily done by applying Newton’s method on log(7) with a starting
value of log(7) to find a minimum on either the CV or GCV functions. Once

an optimum value of 7 is found, it can be used in the procedure shown above.

3. Simulation

We investigate the empirical performance of the proposed method by sim-
ulations. For the cod example in section 4, the 1 function appears to be

bimodal. This motivates us to study two matters: the number of significant



modes detected and the error involved in the estimates. We consider six

cases of the following model motivated by the cod example:

Yt:I{+Cbt+’l/1TCtbt+et;t:]_,...,T. (12)

The vector Y, is of the dimension F' x 1, and the dimension of the vectors
v and c¢; is D x 1 for both. The error vector e; has a multivariate nor-
mal distribution with mean zero and variance-covariance matrix o2/. In the

estimation, we impose the smoothness constraints

Vi — 2000 + Yigo = Migo; 1 =1,...,D =2, (13)

as well as end constraints:

Y =m
=21 + o =y
Yp_1— 2¢p = Np41

Yp = Np+2,

to ensure that the 1 function estimates are smooth across the boundaries
beyond which they are zero.

For each of the two examples below, T" = 50, F = 3, D = 61, k =
[1,0,—1]7, and ¢ = 1. The value of b; is determined by taking a random
number from a normal distribution with mean zero and standard deviation
one, while the values of c¢; are determine by drawing sixty-one random num-
bers from a normal distribution with zero mean and unit variance. The error
standard deviation was either 0.05 or 0.1, and the v, equal the probability
density function at j of an equal mixture of two normal distributions, namely

N(30—A,9) and N(30+ A, 4), A =10,5,0. Hence ¢ has two modes that are
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separated by either 20 units, 10 units, or 0 units (thus making one mode).
Each case was simulated 1,000 times. The plots of the three different sets of
s used can be found in figure 1.

Recall the simulation was used to study two matters: the number of
significant modes detected and the error involved in the estimates. Results
of both of these can be found in table 1. In regards to the first matter,
the simulation was able to detect unimodality well in the case where the
modes were not separated. In the cases where there was separation between
the modes, bimodality was detected about 64% of the time when the modes
were clearly separated and/or the error variability was low. (Note that we
count the number of modes only for the v;’s that are significantly different
from zero, hence there could be no mode in the curve if none of the 1;’s are
significant.) As far as the second matter, the mean absolute deviation and
mean deviation were small as compared to the maximum value of the ’s
being estimated. Their standard deviations were small as well and depended

proportionately on the error variance.
[Figure 1 about here.]

[Table 1 about here.]

4. Inflow of larvae cod as an example

Recent genetic analysis by Knutsen et al. (2004) suggested that the young
(half-year old) cod sampled in some fjords in the Skagerrak, Norway, resem-
bled adult cod in the North Sea in year 2001 but less so in year 2000. It was,
furthermore, found that in 2001 when the sampled young cod of Skagerrak
were genetically similar to the adult cod of North Sea, there was higher than

average inflow of sea current from the North Sea to the Skagerrak, but not so



in 2000 when the resemblance switched to the local adult cod. Thus, Knutsen
et al. (2004) suggested the hypothesis that the North Sea cod stock might
have contributed to the local cod population in the Skagerrak via transporta-
tion of cod eggs by sea current from North Sea into the Skagerrak. Stenseth
et al. (2004) tested this hypothesis using a long-term monitoring beach seine
data on the annual counts of young cod, the (annual) spawning biomass of
North Sea cod and daily inflow of sea current from North Sea to Skagerrak.
It is believed that the cod spawn, or breed, in the months of March and
April, but it is not known specifically when the majority of the spawning
took place. Stenseth et al. (2004) computed the average daily inflow (from
North Sea to the Skagerrak) over several windows of 2-week period between
March and April, and tested the transportation hypothesis using a regres-
sion model with a covariate that is the product of average sea influx times
log spawning biomass, a proxy for the transportable amount of cod eggs, the
coefficient of which is non-zero under the transportation hypothesis and zero
otherwise. Stenseth et al. (2004) found that the transportation hypothesis
is consistent with the data, with stronger, significant result when the mean
inflow is computed over the second half of March. Clearly, which two-week
period over which the mean inflow is computed is critical as the test can be
made more powerful by aligning the period with the main period when the
cod spawned.

The developed method allows us to study the problem from a different
perspective. Instead of searching for an optimal window for averaging the
daily inflow, we consider the distribution of the cod spawning date. Let S be
the date, counted from the beginning of March of each year, when a randomly

selected adult cod spawn. Let v; be the probability that S = j. The daily
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contribution of North Sea cod to the Skagerrak is postulated to additively
contribute, on the logarithmic scale, to the young cod counts by an amount
proportional to 1;c; jb; where b, is the log spawning biomass in the ¢th year
and ¢;; be the mean inflow on the jth day of the tth year; for simplicity
of notation, the proportional constant is absorbed into 1; so that they need
not sum to 1. In other words, the total annual North-Sea-cod contribution
equaled 2?1:1 Yjc by, under the transportation hypothesis.

Let ng,s be the logarithm of the number of young cod caught in fjord s
in year t. We confine the analysis to eight fjords in the Southern Norway,
over the period from 1971 to 1997 over which we have complete data. These
eight fjords are reported in the earlier analysis by Stenseth et al. (2004)
to admit significant transportation effects. In fact, n?,s are part of a longer
residual series from a stochastic regression model using a longer database
that has adjusted for the intra-specific and the inter-specific effects, as well
as the environmental effects on the local cod in the Skagerrak; see Chan et al.
(2003a), Chan et al. (2003b) and Stenseth et al. (2004). We now state the

model.

61
nfy=rks+Ch+ Y Picib+ens t=1,...,26 s=1,...,8.  (14)

j=1
The k,’s can be interpreted as the fjord-specific effect on the cod population,
and they may be expected to be close to zero because ng,s are part of a long
residual series. The term (b; can be interpreted as the contributions of the
North Sea adult cod by directly swimming to the Skagerrak and spawning
there.

Our prior knowledge of the amount of spawning that occurs outside of

the months of April and March (see, e.g., Knutsen et al., 2004) allows us to
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impose the following end constraints:

(R U
=291 + Py =1
Yp_1— 2Yp = TID+1

Yo = Np+2, (15)

where D = 61. These end constraints merely incorporate the prior assump-
tion that v is zero beyond March and April, and maintain the constraint
of small roughness across the boundaries. We estimated the model using
the method proposed in section 2. Figure 2 plots the 1 function where the
central curvy line is the estimated curve and the other two lines enclose the
individual 95% confidence limits. The value of 7 estimated by the method
shown in section 2 is 2,178, with the initial value being 37,037, as deter-
mined by the procedure outlined at the end of section 2. Clearly, there is a
significant spike in the spawning that begins on March 15th and ends March
27th. To check the robustness of the ¢ estimates against the window width,
we have also re-done the analysis with the s specified as zero outside the
period from March 15th to April 8th. It was then found that the estimates
are almost unchanged and hence not reported. In conclusion, there is clear
evidence that sea current transported the North Sea cod eggs to the Skager-
rak, mainly over the second half of March. Furthermore, the data suggest
that the North Sea adult cod did not swim to the Skagerrak to spawn there.
These conclusions are consistent with the findings of Stenseth et al. (2004)
that is obtained by assuming constant 1) over 2-week periods. However, our
new method allows for much more refined conclusions of great importance

to the field of marine ecology.
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[Figure 2 about here.]

[Table 2 about here.]

5. Conclusion
We have demonstrated the potential usefulness of the method of penalized
likelihood for estimating a smooth common transfer function with a panel of
short, contemporaneously correlated errors. As illustrated with our marine
example, the new method provides refined conclusion within the field of
marine ecology, particularly with reference to how different populations of a
marine fish species are interlinked through larvae inflow. As such, our results
are of direct relevance for studies on the ecological effects of climate change
(see, e.g., Stenseth et al., 2002).

There are a few interesting future research problems. First, it is of in-
terest to work out the case of non-normal errors in greater details. Second,
the common transfer function assumption is a strong one. A more flexible

approach is to incorporate random-effects in the transfer function model.
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Figure 1. Plots of 9; versus j for the simulation model; 9 is the probability
density function of the an equal mixture of N(30 — A,9) and N (30 + A, 4),
where A = 0,5, 10, from left to right.
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Figure 2. The plot of /lﬁj versus j for the North Sea cod — the central curvy
line. The other two curves envelope the individual 95% confidence limits.
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standard deviation = 0.05

standard deviation = 0.1

A A

10 | 5 | 0 10 | 5 | 0

no. of modes % of significant modes no. of modes % of significant modes
0 0.5% 10.5% 9.6% 0 0.6% 6.9% 10.5%
1 98.2% | 24.0% | 19.7% 1 94.0% | 46.6% | 25.6%
1.3% 63.2% | 68.9% 49% | 42.6% | 60.0%
>3 0.0% 2.3% 1.8% >3 0.5% 3.9% 3.9%
mean abs. dev. | 0.0281 | 0.0256 | 0.0252 | mean abs. dev. | 0.0353 | 0.0298 | 0.0307
SD 0.00480 | 0.00464 | 0.00546 SD 0.00961 | 0.01031 | 0.01275
mean deviation | 0.0166 | 0.0167 | 0.0163 || mean deviation | 0.0162 | 0.0159 | 0.0159
SD 0.00528 | 0.00497 | 0.00491 SD 0.00902 | 0.00906 | 0.00970

Table 1

Simulation results for the model defined by (12).
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Parameter | Estimate SE
K1 -0.028 | 0.151
K9 -0.042 | 0.160
K3 0.170 | 0.147
K4 -0.049 | 0.131
K5 -0.230 | 0.165
Kg -0.246 | 0.100
K7 -0.122 | 0.132
Kg 0.097 | 0.128
¢ -0.007 | 0.008
Table 2

Estimates of model for the Skagerrak cod.
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